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1. Introduction
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Context
▶ Focus: large (language) models (LLMs)
▶ State-of-the-art: next-token prediction, trained on massive amount of data
▶ used downstream on any task

▶ Figure: from Bommasani et al., On the Opportunities and Risks of Foundation
Models, Tech. Report., 2021
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Motivation
▶ Problem: hard to control their behavior
▶ Example (i): Bing chatbot in 2023

▶ Source: The Verge
6

https://www.theverge.com/2023/2/15/23599072/microsoft-ai-bing-personality-conversations-spy-employees-webcams


Motivation, ctd.

▶ Example (ii): Grok’s answers after an update in July 2025

▶ Source: Ars Technica
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https://arstechnica.com/tech-policy/2025/07/grok-praises-hitler-gives-credit-to-musk-for-removing-woke-filters/


Motivation, ctd.

▶ Example (iii): Anthropic’s Claude autonomously hacks companies in Nov. 2025

▶ “The hackers sidestepped Anthropic’s safeguards by telling the model they were
conducting security audits on behalf of the targets.”

▶ Source: The Wall Street Journal
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https://www.wsj.com/tech/ai/china-hackers-ai-cyberattacks-anthropic-41d7ce76


How to fix this?

▶ High-level idea: from an existing model, detect and correct bad behavior
▶ a.k.a. alignment, steering, guidance,...
▶ Challenges:

▶ scale of the models
▶ hurts the performance
▶ where to begin with?

▶ This talk: representation-level steering = modifying internal representations
▶ Other approaches (not this talk):

▶ fine-tuning1

▶ reinforcement learning from human feedback2

▶ prompt engineering3

1Wei et al., Finetuned Language Models Are Zero-Shot Learners, ICLR, 2022
2Ziegler et al., Fine-Tuning Language Models from Human Preferences, preprint, 2019
3Marvin et al., Prompt engineering in large language models, International Conference on Data

Intelligence and Cognitive Informatics, 2023
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2. An activation space detour
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Activation space

Definition: we call activation the intermediate quantity computed at a neuron
(before non-linearity). The collection of activations in a given layer (with d hidden
units) gives rise to the activation space (Rd).

▶ Example (i): feed-forward multi-layer perceptron

RD · · · · · ·
kth class

h : RD → Rd g : Rd → R
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Activation space

▶ Example (ii): transformer-based architectures

f (t) LN

attention

attention

... LN perceptron+ + f (t+1)

▶ In general: get token representations in the output of the MLP
▶ Two approaches: tokens by token (d), or documents (T × d)
▶ sometimes called residual stream
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Concept algebra

▶ Surprising observation: one can do vector operations on the latent
representations (!)

▶ Early example: word vectors

▶ Figure: Figure 2 in Mikolov, Yih, Zweig, Linguistic regularities in continuous
space word representations, Proc. NACL, 2013

▶ still true for more modern architectures, see here for a CLIP experiment
13

https://github.com/juliawenkmann/xai-reproductions/blob/main/reproductions/concept_algebra/concept_algebra.ipynb


How to find good directions?

▶ Unintuitive: why should this work? everything is highly non-linear!
▶ still an open problem, not the topic of the talk4

▶ Natural question: how to find meaningful directions?
▶ What would be nice: canonical basis in the activation space
▶ that is, hope that hidden units encode for high-level features
▶ then steering would be simple identify the neuron and modify its activation:

h(x)← h(x) + αej .

4see Arora et al., Linear Algebraic Structure of Word Senses, with Applications to Polysemy,
Transactions of the ACL, 2018

14



Visualizing concepts associated with individual neurons

▶ First step: detect which concepts are associated to individual neurons
▶ several ways of doing this, most intuitive:
▶ take some dataset, look for the images associated to max activation5

▶ At first glance: some neurons are monosemantic
▶ that is, neuron lights up in accordance to one type of high-level feature

▶ Figure: Figure 3(c) in Szegedy et al., Intriguing properties of neural networks,
ICLR, 2014

▶ GoogLeNet experiment here
5Goodfellow et al., Measuring invariances in deep networks, NeurIPS, 2009
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https://github.com/juliawenkmann/xai-reproductions/blob/main/reproductions/top_activations/top_activations.ipynb


Visualizing concepts associated with individual neurons

▶ But not all of them: many neurons are polysemantic

▶ Figure: Figure 3(a) in Szegedy et al., Intriguing properties of neural networks,
ICLR, 2014

▶ Even more interesting: some random directions in the activation space also
seem monosemantic6...

▶ Conclusion: most neurons are polysemantic, no easy way to identify concepts
▶ Idea: maybe the granularity of the dataset prevents us from identifying what the

neuron really encodes?
6Bau et al., Network dissection: Quantifying interpretability of deep visual representations,

CVPR, 2017
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Visualizing concepts associated with individual neurons

▶ Possible solution: maximize the input activating the neuron by gradient ascent7

▶ generally starting from a random image (i.i.d. Gaussian pixel values)

▶ Figure: maximizing activity of unit 11 in layer mixed4a of GoogLeNet, credits
Chris Olah

▶ Conclusion: concepts attached to single units do not seem human-interpretable
7Ehran et al., Visualizing higher-layer features of a deep network, Tech. Report., 2009
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https://distill.pub/2017/feature-visualization/


3. Monosemanticity
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Sparse coding

▶ Hypothesis: superposition (too many concepts to encode for too few neurons)
▶ Possible solution: disentangle = find basis where good decomposition occur
▶ Intuition: ideally, many 0 coefficients (sparse representation)

h(xi) ≈ 0.3vwhite + 0.5vflower .

▶ Sparse coding:8 assume training data x1, . . . , xn ∈ X
▶ we are looking for a dictionary D ∈ Rd×m and coefs α1, . . . , αn ∈ Rm such that

1
n

n∑
i=1

min
α∈Rm

[1
2 ∥hi − Dαi∥2 + λ ∥αi∥1

]
is as small as possible

▶ Remark: ℓ1 norm promotes sparsity (λ > 0 is a regularization parameter)
8Mairal et al., Online dictionary learning for sparse coding, ICML, 2009
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Atoms of discourse

▶ Example: word vectors9

▶ Figure: from Arora et al., Linear Algebraic Structure of Word Senses, with
Applications to Polysemy, Trans. ACL, 2018. Atoms = columns of D.

9Faruqui et al., Sparse Overcomplete Word Vector Representations, Proc. ACL, 2015
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Sparse autoencoders

▶ More recent approach: parameterize the αs
▶ set hi ··= hi − bd ∈ Rd the normalized latent representations
▶ define αi = ReLU(Wehi + be) ∈ Rm

▶ take
1
n

n∑
i=1

[
∥xi −Wdαi − bd∥2 + λ ∥αi∥1

]
as objective function

▶ then standard optimizers (AdamW)
▶ more details on the training here
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https://transformer-circuits.pub/2024/april-update/index.html#training-saes


Sparse autoencoders
▶ Originally proposed by Subramanian, Suresh, Peters, Extracting Latent Steering

Vectors from Pretrained Language Models, Findings of the ACL, 2022
▶ adapted to LLMs by Huben et al., Sparse Autoencoders Find Highly Interpretable

Features in Language Models, ICLR, 2024
▶ Empirical finding: human-interpretable features emerge... (!)
▶ ...and one can steer the model using these directions (!)

▶ Figure: early example from Anthropic (monosemantic features, 2023)
22

https://transformer-circuits.pub/2023/monosemantic-features/index.html


More interesting examples

▶ Figure: model = Claude 3 Sonnet, courtesy of Anthropic (scaling
monosemanticity, 2024)
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https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://transformer-circuits.pub/2024/scaling-monosemanticity/


More interesting examples
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4. Difference of means
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Difference of means
▶ Main issues with SAE: costly and challenging to train,10 unstable11

▶ Back to basics: old ideas from image generation

▶ Figure: Figure 7 from Radford, Metz, Chintala, Unsupervised representation
learning with deep convolutional generative adversarial networks, preprint, 2015

10Gao et al., Scaling and evaluating sparse autoencoders, Tech. Report, 2024
11Paulo and Belrose, Sparse Autoencoders Trained on the Same Data Learn Different Features,

preprint, 2025
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Difference of means

▶ More formally: take n samples xi from target concept (i ∈ C) and n random
ones (i ∈ R)

▶ compute latent representations h(xi) for each sample
▶ then compute the difference of means12 vector

v ··=
1
n
∑
i∈C

h(xi)−
1
n
∑
i∈R

h(xi) ∈ Rd .

▶ use v as a steering direction
▶ namely, future inputs see their latent representation modified as

h(x)← h(x) + αv ,

with α the steering strength
12Turner et al., Steering language models with activation engineering, preprint, 2023
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Experimental results

▶ Experimentally: it works great!

▶ Figure: results from Wu et al., AxBench: Steering LLMs? Even Simple Baselines
Outperform Sparse Autoencoders, ICML, 2025
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Influence of the steering factor
▶ Open question: what is the influence of α on the performance of the model?

▶ Figure: large α sharply decreases the performance of the model on the MMLU
benchmark,13 courtesy from Anthropic (evaluating feature steering)

13Hendrycks et al., Measuring Massive Multitask Language Understanding, arxiv, 2020
29

https://www.anthropic.com/research/evaluating-feature-steering


Influence of the steering factor
▶ More fine-grained question: evolution of concept probabilities

▶ Figure: influence of α on the estimated proba of matching the desired behavior
▶ courtesy of Rimsky et al., Steering Llama 2 via Contrastive Activation Addition,

Proceedings of the ACL, 2024
▶ Even more simple: influence on the proba of next-token for a given context
▶ can we explain theoretically this behavior?
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5. Towards understanding steering
strength
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The data

▶ tokens = elements of the vocabulary = [V ]
▶ documents = sequences of tokens ∈ vocabulary
▶ Simplified setting: concept = subset of the vocabulary:

[V ] = C1 ∪ C2 ∪ · · · ∪ CG , with Ci ∩ Cj = ∅ and |Ci | = s .

▶ Example: G = 2, V = 52, s = 26,

C1 = {a, b, c, d , e, f , g , h, . . .}, C2 = {A, B, C , D, E , F , G , H, . . .} .

▶ Training set: (ci , zi) with i ∈ [n], with
▶ ci = context = T − 1 tokens;
▶ zi = next token.
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Assumptions on the training data

▶ Assumption (pure examples): for a given i ∈ [n], there exists j ∈ [G ] such that

ci ,1, . . . , ci ,T−1, zi ∈ Cj .

▶ Example: T = 15 

(c1, z1) = (abckjfjkgdkgkm, d)
(c2, z2) = (dfgkefgkmegkkg , a)
(c3, z3) = (GBKMLFGBLMKLTH, M)
...

...

▶ Assumption (all contexts): each context / next-token appears exactly one time
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The model

▶ Unconstrained Feature Model (UFM):14 fθ(ci) = WH:,i , with
▶ W ∈ RV ×d decoder weights;
▶ H ∈ Rd×n embeddings of contexts.

▶ Parameters: θ = (W , H)
▶ essentially a linear transformer
▶ Prediction: sampling according to σ(fθ(c)) (σ = softmax)
▶ Training: gradient descent on cross-entropy loss

CE(θ) = −1
n
∑
i∈[n]

log σzi (fθ(ci)) .

14Zhao et al., Implicit geometry of next-token prediction: From language sparsity patterns to model
representations, CoLM, 2024
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Assumptions on the model

▶ Assumption: model matches the dataset next-token probabilities

∀j ∈ [m], z ∈ [V ], σz(f (cj)) = p(z | cj) ··=
1

|{i ∈ [n] : ci = cj}|
∑

i∈[n]:ci =cj

1z=zi .

▶ Remark: precise description of θ after learning exists15,16

▶ Assumption: for a given z , p(z | cj) can only take two values: if cj and z belong
to the same concept, then p(z | cj) = az , and otherwise p(z | cj) = bz , with
1 > az > bz > 0.

15Thrampoulidis, Implicit optimization bias of next-token prediction in linear models, NeurIPS, 2024
16Zhao et al., Implicit Geometry of Next-token Prediction: From Language Sparsity Patterns to

Model Representations, COLM, 2024
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Next-token probabilities

a b c A B C α β γ
0

0.3
az
bz

next token (z)

▶ Figure: dataset next-token probabilities (p(z | cj))z∈[V ]; solid dots: concept is
lower case; transparent dots: concept is upper case
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Steering

▶ Definition: let γ (resp. ρ) be a set of contexts from concept C (resp. R). We
define the steering vector as

v = 1
|γ|
∑
c∈γ

H:,c −
1
|ρ|
∑
c∈ρ

H:,c ∈ Rd .

▶ Remark: typically, R ∩C = ∅ and R is the “opposite” of C (contrastive setting)17

▶ Steering: in this setting, context ci leads to outputs sampled according to

σ(W (H:,j + αv)) = σ(fα(cj)) ,

where α ∈ R is the steering factor

17Turner et al., Steering language models with activation engineering, preprint, 2023
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Log-odds
▶ Starting point: closed-form description of the steered quantities

Lemma: Assume |γ| = |ρ| = m. For all z ∈ [V ], define the log-odds

M(z) = 1
m log

(∏
j∈γ p(z | cj)∏
j∈ρ p(z | cj)

)
.

Then, the steering probability can be written as

σz(W (H:,j + αv)) = p(z | cj)
p(z | cj) +

∑
z ′ ̸=z p(z ′ | cj)exp (−α(M(z)−M(z ′))) .

▶ define further M ··= {z ∈ [V ] : M(z) = maxz ′∈[V ] M(z ′)} the set of tokens
attaining the maximum margin (M: attaining the minimum)
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Probability increase

▶ Definition: probability increase:

∆p(z | cj , α) ··= σz
(
fα(cj)

)
− σz(f (cj)) .

Proposition: Let T be the target concept. Then, under our assumptions,
▶ (bump behavior) for any z ∈ [V ] \ (M ∪M), there exists a unique α(j,z) ∈ R

such that ∆p(z | cj , α) is strictly increasing on (−∞, α(j,z)] and decreasing on
[α(j,z), +∞);

▶ (peak position) for any z ∈ T and z ′ /∈ T , it holds that α(j,z ′) < α(j,z);
▶ (monotonous behavior) for any z ∈ T ∩M (resp. z ∈ T ∁ ∩M),

∆p(z | cj , α) is strictly increasing (resp. decreasing) on R.
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Steering probabilities, ctd.

0 10 20 30 40 50 60

0.2
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p(
) target

off-target

▶ Figure: evolution of ∆i ,z(α), toy model, fixed concept
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Next-token probabilities, real-life examples

0 50 100 150 200
α

0.0

0.2

0.4

0.6

openai-community/gpt2

▶ Figure: GPT2, layer 5, concept ’evil’, top tokens at α = 200
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Next-token probabilities, real-life example

0 50 100 150 200
α

0.0

0.2

0.4

google/gemma-3-1b-it

▶ Figure: Gemma 3 1B, layer 14, concept ’evil’, top tokens at α = 200
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Next-token probabilities, real-life example

0 50 100 150 200
α

0.0

0.2

0.4

Qwen/Qwen3-8B

▶ Figure: Qwen 3 8B, layer 23, concept ’evil’, top tokens at α = 200
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Concept probability
▶ Definition: increase / decrease of a concept:

∆p(C | cj , α) ··=
1
|C|
∑
z∈C

∆p(z | cj , α) ,

where C is any concept

Proposition: Let T denote the target concept, and let C be any concept. Under
our assumptions,

∆p(C | α) = 1
2 |C|

(
tanh

(
νj(α) + rj

2

)
− r ′

j

)
.

▶ Remark: this is precising a numerical observation from von Rütte et al. A
Language Model’s Guide Through Latent Space, ICML, 2024
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Concept probability, ctd.

Corollary: ∆p(T | α) is increasing in α. Moreover, for any C′ ̸= T such that
C′ ∩ (M ∪M) = ∅, we have the limits

lim
α→±∞

∆p(C′ | α) = − 1
|C′|

∑
z∈C′

p(z | cj) .

Finally, for any C ̸= T satisfying

max
z∈C

M(z) ≤ min
z /∈C

M(z) ,

∆p(C | α) is decreasing in α.
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Concept probability, ctd.
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▶ Figure: target concept ∆p(T | α) increases with a sigmoidal shape, off-target
∆p(C | α) decreases sigmoidally, and other concepts ∆p(C′ | α) has a bump shape
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Concept probability, real-life examples
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▶ Figure: concept probability for the three concepts (depression, joy, evil),
estimated using a judge LLM (Gemma 3 12B)
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Concept probability, real-life examples
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▶ Figure: concept probability for the three concepts (depression, joy, evil),
estimated using a judge LLM (Gemma 3 12B)
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Concept probability, real-life examples
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▶ Figure: concept probability for the three concepts (depression, joy, evil),
estimated using a judge LLM (Gemma 3 12B)

49



Cross-entropy

▶ Definition: difference of cross-entropy:

∆CE(α) ··= CE(fα)− CE(f ) .

Proposition: Under our assumptions, as α→ 0, the cross entropy increase satisfies

∆CE(α) = 1
2
∑

j∈[m]
πjVarj (M(Z )) α2 + o(α2) ,

where Varj (M(Z )) is the variance of the log-odds for tokens Z sampled
accordingly to (p(z | cj))z∈[V ] and πj be the probability of each distinct context cj .
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Cross-entropy, ctd.
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▶ Figure: local behavior of ∆CE at α = 0
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The impact of normalization

▶ real-life → layer-normalization:

y ··= LN
(
h(L))W ⊤ .

▶ thus after steering:

y(α) ··= LN
(
h(L) + αv + R(α)

)
W ⊤ ,

where R(α) remains bounded

Proposition: Consider steering the residual stream h(ℓ) of a transformer in the
direction v ∈ RT×d . As α→ ±∞, the steered logits y(α) converge towards
LN(±v)W ⊤.
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Cross-entropy, real-life examples
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▶ Figure: cross-entropy, steering for 3 different concepts
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Cross-entropy, real-life examples
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▶ Figure: cross-entropy, steering for 3 different concepts
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Cross-entropy, real-life examples
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▶ Figure: cross-entropy, steering for 3 different concepts
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Conclusion

▶ In this talk:
▶ theoretical study of steering strength for difference-of-means steering
▶ non-monotonous behavior of next-token probabilities
▶ non-monotonous behavior of accuracy

▶ Future work:
▶ study more complicated models
▶ actionable choice of α

▶ Resources:
▶ preprint
▶ code for the experiments
▶ code for visualization experiments
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https://arxiv.org/abs/2602.02712
https://github.com/MagamedT/steering
https://github.com/juliawenkmann/xai-reproductions


Thank you for your attention!
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